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A network of epigenomic and transcriptional cooperation
encompassing an epigenomic master regulator in cancer
Stephen Wilson1 and Fabian Volker Filipp 1

Coordinated experiments focused on transcriptional responses and chromatin states are well-equipped to capture different
epigenomic and transcriptomic levels governing the circuitry of a regulatory network. We propose a workflow for the genome-wide
identification of epigenomic and transcriptional cooperation to elucidate transcriptional networks in cancer. Gene promoter
annotation in combination with network analysis and sequence-resolution of enriched transcriptional motifs in epigenomic data
reveals transcription factor families that act synergistically with epigenomic master regulators. By investigating complementary
omics levels, a close teamwork of the transcriptional and epigenomic machinery was discovered. The discovered network is tightly
connected and surrounds the histone lysine demethylase KDM3A, basic helix-loop-helix factors MYC, HIF1A, and SREBF1, as well as
differentiation factors AP1, MYOD1, SP1, MEIS1, ZEB1, and ELK1. In such a cooperative network, one component opens the
chromatin, another one recognizes gene-specific DNA motifs, others scaffold between histones, cofactors, and the transcriptional
complex. In cancer, due to the ability to team up with transcription factors, epigenetic factors concert mitogenic and metabolic
gene networks, claiming the role of a cancer master regulators or epioncogenes. Significantly, specific histone modification patterns
are commonly associated with open or closed chromatin states, and are linked to distinct biological outcomes by transcriptional
activation or repression. Disruption of patterns of histone modifications is associated with the loss of proliferative control and
cancer. There is tremendous therapeutic potential in understanding and targeting histone modification pathways. Thus,
investigating cooperation of chromatin remodelers and the transcriptional machinery is not only important for elucidating
fundamental mechanisms of chromatin regulation, but also necessary for the design of targeted therapeutics.
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INTRODUCTION
Beyond genomic alterations, aberrant epigenomes contribute to
many cancers, as demonstrated by widespread changes to DNA
methylation patterns, redistribution of histone marks, and
disruption of chromatin structure.1 Altered epigenomes and
transcriptomes are closely intertwined and share non-genomic
mechanisms of dysregulation in cancer, and are therefore not just
a passive by-product of cancer.2 Epigenomic modifiers have the
ability to affect the behavior of an entire network of cancer genes
and can take on oncogenic roles themselves.3 Furthermore,
epigenetic factors cooperate and team up with transcription
factors to control specific gene target networks.4,5 In such works
and in the following text, a cis-regulatory, synergistic molecular
event between epigenetic and transcription factors is referred to
as transcriptional cooperation (Fig. 1).
The combination of both transcriptomic and epigenomic

profiling offers insight into different levels of gene regulation,
transcription factor binding motifs, DNA and chromatin modifica-
tions, and how each component is coupled to a functional output.
Chromatin remodelers and transcription factors are in close
communication via recognition of post-translational histone
modifications.6 Thereby, they have the ability to harmonize and
synchronize a dynamic exchange of chromatin between open,
transcriptionally active conformations, and compacted, silenced
ones.3 Coordinated experiments interrogating transcriptional
responses and chromatin binding via chromatin immuno-

precipitation with next generation sequencing (ChIP-Seq) are
well-equipped to capture different epigenomic and transcriptomic
levels governing the circuitry of a regulatory network.5

Regulatory networks in biology are intrinsically hierarchical and
governed by interactions and chemical modifications.7,8 The
regulome describes the interplay between genes and their
products and defines the control network of cellular factors
determining the functional outcome of a genomic element. The
reconstruction of regulatory gene networks is stated as one of the
main objectives of systems biology.9,10 However, an accurate
description of the regulome is a difficult task due to the dynamic
nature of epigenetic, transcriptional, and signaling networks.
Systems biology has the ability to integrate genome-wide omics
data recorded by ChIP-Seq, assay for transposase-accessible
chromatin using sequencing (ATAC-Seq), whole genome bisulfite
sequencing (WGBS-Seq), and RNA sequencing (RNA-Seq) technol-
ogy to identify gene targets of a regulatory event.11 The
integrated analysis of such data—on the one hand based on
gene networks, on the other hand based on sequence features of
high-resolution sequencing data—captures cooperation among
regulators. Effective experimental design and data analysis of
complementary epigenomic and transcriptomic platforms are
required to decipher such epigenomic and transcriptional
cooperation, which has a profound impact in development and
disease.
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We took advantage of published, information-rich transcrip-
tomic and epigenomic data to study regulatory networks
surrounding histone lysine demethylation. The presence or
absence of methylation on histone lysine residues correlates with
altered gene expression and is an integral part of the epigenetics
code.12 In particular histone 3 lysine 9 methylation (H3K9) is
regarded as an epigenetic mark associated with suppressed gene
activity.13 The H3K9 lysine demethylase 3 A (KDM3A, also referred

to as JMJD1A, Gene ID: 55818, HGNC ID: 20815) demethylates
mono-methylated or di-methylated histone marks, thereby
activating gene regulation within spermatogenesis, metabolism,
stem cell activity and tumor progression.14–16 Genome-wide ChIP-
Seq data of KDM3A identified specific gene targets and
transcriptional networks in androgen response, hypoxia, glycoly-
sis, and lipid metabolism, emphasizing the importance of
cooperation with transcription factors.5 However, among epige-
netic profiling experiments, a common observation is that
enrichment studies provide significance for multiple transcription
factors and not just one single, prioritized hit. This underscores the
concept of transcriptional cooperation among epigenetic players
but also emphasizes the need to design a reliable workflow that
includes cross-validation with complementary, multi-omics plat-
forms and analysis techniques.

RESULTS
Deciphering the regulatory landscape of an epigenomic and
transcriptomic network
The regulatory landscape of an epigenomic player includes
histone modifications, non-enzymatic chromatin interactions,
cooperation with transcription factors, transcriptional modulation
of gene target networks, and eventually stimulation of specific
effector pathways. With the help of hierarchical experimental
design, the complementary power of epigenomic and transcrip-
tomic data can be leveraged, and thus used to address distinct
levels of the regulome.4 However, different genome-scale data
platforms and analysis techniques result in the detection of
significant, yet only occasionally overlapping, insight into reg-
ulatory networks. To address this, the intersection of multi-omics
data levels is useful to augment and validate epigenetic regulation
of transcriptional programs. At the same time, there are unique,
platform-specific insights, which need to be analyzed accordingly.

Prioritization of cooperating transcription factors by integration of
complementary data
The goal of our network analysis is to detect epigenomic and
transcriptomic cooperation. Specifically, it is of interest to identify
and prioritize transcription factors that are closely associated with
an epigenomic factor by integrating complementary data (Fig. 1).
Analysis of motif enrichment (AME) determines significant
enrichment of transcription factor motifs among promotors or
given sequences. Transcription factor target (TFT) analysis defines
which transcription factor governs a set of target genes. Upstream
regulator analysis (URA) integrates TFT networks with reconstruc-
tions of systems biology maps. Each platform provides a measure
of significance for each detected transcription factor feature and
corrects for multiple hypothesis testing using unbiased genome-
wide data.17 Importantly, computations of significance of enrich-
ment may be performed at the level of either the gene or the
sequence. Furthermore, different members of transcription factor
families have the ability to recognize the same sequence motif.
Therefore, dedicated searches may account for such ambiguity
and overcome potential gene-specific database biases of indivi-
dual transcription factors (Fig. 2). In a subsequent step, results of
complementary platforms are intersected and compared. Taken
together, combinations of high-throughput sequencing data
deliver coordinates of epigenomic modification, enrichment of
transcription factor motifs, transcriptional output, and networks of
transcription factor targets (Figs. 1, 2).

Epigenomic switch of histone demethylation makes chromatin
accessible and activates gene expression
Our approach is showcased by elucidating the epigenomic switch
of KDM3A emphasizing its role as a master regulator. In order to

Fig. 1 Universal workflow for computational elucidation of regula-
tory cooperation networks. a By conjoining epigenomics and
transcriptomics data, it is possible to define an effector network
comprised of target genes affected by epigenomic regulation. The
epigenomic effector network is regulated by chromatin binding or
chromatin modification events resulting in gene expression
changes. b Concerted analysis of chromatin immunoprecipitation
ChIP-Seq and RNA-Seq data (or similar data) enables identification of
epigenomic and transcriptomic master regulators and transcription
factor networks. c By elucidating transcription factors associated
with an epigenomic event or regulator, it is possible to identify a
well-defined epigenomic-transcriptomic cooperation network sup-
ported by complementary multi-omics data. A color scheme
denoting, both data types and systems biology analyses, is
maintained throughout the entire document. Each color represents
a specific analysis technique executed on either genome-wide
epigenome and transcriptome profiles. The genome-wide intersec-
tion of epigenomic target regions (light green) with differentially
expressed (DE) transcripts (purple) results in the effector network of
regulated target genes. The intersection of analysis of motif
enrichment (AME) and transcription factor target (TFT), and
upstream regulator analysis (URA) approaches provides insights
into cooperative networks of transcription factors associated with
epigenomic regulators. Importantly, such genome-wide information
can be accessed at the sequence or gene level providing different
level of depth and resolution. ChIP-Seq data from AME (green) is
enhanced by position site-specific matrix (PSSM) models of
transcription factor motifs. TFT analysis can be performed on gene
target sets derived from ChIP-Seq (yellow) or transcriptomics data
(red). Furthermore, gene expression data contains valuable direc-
tional information indicated by arrows next to the gene expression
data utilized by URA (blue), which incorporates hierarchical systems
biology networks. The core analysis of the workflow includes multi-
omics data integration between chromatin binding and differential
gene expression events
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better understand the impact of KDM3A on transcriptional
networks, coordinated ChIP-Seq and transcriptomic data of
KDM3A binding and demethylation activity in combination with
knockdown of KDM3A was utilized.5 Such a combined array of
matching epigenomics and transcriptomics experiments has the
ability to focus on the cooperative forces of epigenetic regulation
as well as its transcriptional consequences. A ChIP-Seq experiment
offers direct insight into chromatin binding events and chemical
modifications of histones. By overlaying genomic binding events
with tracks of epigenomic marks, such as histone acetylation or
methylation, associated with open or closed states of chromatin, a
functional epigenomic landscape arises. Such ChIP-Seq profiles in
combination with transcriptomics and functional genomics allow
interrogation of the genome-wide impact of knockdown of a
specific epigenomic regulator. Via genome-wide annotation and
integration of sequencing reads, it becomes apparent that
corresponding profiles of binding and histone modifications are
reversed upon loss of function, mirroring the enzymatic function
of the epigenetic modifier. Cooperative epigenomic and transcrip-
tion factor binding coincides with promoter sites on meta gene
coordinates enriched for histone lysine demethylation—overall
indicators of transcriptionally activating epigenetic remodeling.

Regulation of transcriptional networks by H3K9 chromatin
demethylation
Coordinated ChIP-Seq and transcriptomic data classified genome-
wide interactions of the chromatin demethylase KDM3A using
antibodies specific for KDM3A, and its histone marks H3K9me1
and H3K9me2, conjointly with shRNA knockdown of KDM3A in the
CRL-2505 cell line. Transcriptomic impact of 4326 differentially
expressed genes upon KDM3A knockdown showed 2460 genes as
positively regulated by KDM3A activity (down in the CRL-2505
prostate cancer line with shRNA knockdown of KDM3A), and 1866
genes as negatively regulated by KDM3A activity. Using this data
we defined the set of 56.9% differentially expressed genes as
positively regulated by KDM3A activity (down in the CRL-2505
prostate cancer line with shRNA knockdown of KDM3A), and
43.1% of differentially expressed genes as negatively regulated by
KDM3A activity. KDM3A binding locations were defined by a loss
of ChIP-Seq signal following knockdown of KDM3A. Concurrently,
H3K9me1/2 histone marks following KDM3A knockdown are
recognized as target regions of KDM3A histone lysine demethyla-
tion mediated by KDM3A. Changes in these ChIP-Seq marks upon
KDM3A knockdown were contrasted against reference genomic
DNA input or control non-coding shRNA samples. Quantification
of the activity-based ChIP-Seq array matched with knockdown of
KDM3A resulted in 37525 peaks associated with KDM3A binding,
45246 and 32665 H3K9 mono- and di-demethylation (H3K9me1/2-
KDM) events, respectively. Overall, the peak counts of both
histone marks showed a gain of signal upon knockdown of
KDM3A reflecting the demethylase activity. By integrating
continuous ChIP-Seq signals, an average profile of a meta-gene
can be generated and functional coordinates analyzed for
regulatory control. In such a meta-gene profile, promotor regions
are located within 1000 bp upstream of the gene-coding body,
with the transcription start site (TSS) as the start of the gene-
coding body at the zero position, and intergenic regions as the
remaining regions outside of the gene body. KDM3A localized to
the response element-rich promoter regions and demethylated
H3K9me1/2 histone marks in the proximity of the TSS. Taken
together, the meta-gene analysis classified areas important for
transcriptional regulation and defined genomic sequence coordi-
nates relevant for cooperation with transcription factors.

Fig. 2 Transcription factor enrichment associated with activity of an
epigenetic modifier is assessed by complementary multi-omics
platforms and resolved at the family and gene level. a Transcription
factor (TF) enrichment associated with epigenomic activity is
quantified using complementary omics platforms. ChIP-Seq data
provides sequence-based insights on motifs (green) and genomic
coordinates (yellow) of epigenomic activity. Transcriptomics data
provides functional insight into regulated gene networks (red) and
the direction of response (blue). The data was analyzed using
analysis of motif enrichment (AME), transcription factor target
analysis (TFT), or up-stream regulator analysis (URA). b On the one
hand, the analysis is carried out at the level of transcription factor
families based on position-specific matrix-assisted searches of
structural motifs of transcription factor site recognition. This
approach is sequence-based and considers the possibility that
multiple, homologous members of transcription factor families have
the ability to recognize the same transcription factor site. c On the
other hand, the analysis is conducted at the transcript level with
gene-specific insight into transcription factors and their expression
levels. This approach takes advantage of regulatory networks, which
are assigned to specific isoforms of homologous members of
transcription factor families, and includes direction of regulation.
The later approach yields a set of transcriptional coactivators that is
about two orders of magnitude smaller and more specific than the
transcription factor family-based approach
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Accounting for motif similarity and structural homology of
transcription factor families
The array of ChIP-Seq data was subjected to AME and TFT analysis,
while the list of differentially expressed genes served as input for
URA and TFT analysis (Fig. 2a). Each transcription factor hit was
reported with its HGNC identification number, hierarchical
classification of human transcription factors (TFClass) family
barcode, motif logo, and significance corrected for multiple
hypothesis testing using an adjusted p value cut-off of 0.05 (Table
1, Supplementary Information). Each individual analysis yielded
between 29 and 41 significantly enriched transcription factor
families, each corresponding to more than 1000 (1083 and up to
1292, respectively) associated genes (Fig. 2b). In comparison to the
entire realm of 1539 existing transcription factors, such wide-
ranging data tables provide little benefit, despite the impressive p
values produced by analysis tools at first glance. For example
hypoxia inducible factor 1 alpha subunit (HIF1A, Gene ID: 4609,
HGNC ID: 4910, TFClass: 1.2.5) of the PAS domain factors (TFClass
1.2.5) is detected with an adjusted p value below 1.0E-100 by AME
in the ChIP-Seq data. Other members of the same family like the
aryl hydrocarbon receptor nuclear translocator (ARNT, Gene ID:
405, HGNC ID: 700, TFClass: 1.2.5) show similar significance, since
the detection is based on the same sequence logo, highlighting
the lack of ability to differentiate between structurally homo-
logous transcription factors. Therefore, we intersected all four sets
of AME ChIP-Seq, TFT ChIP-Seq, URA transcriptomics, and TFT
transcriptomics, and narrowed down 21 transcription factor
families supported by all datasets (Fig. 2a). Despite a considerable
improvement of 21 projected families among 110 existing
transcription factor families, the final set maps back to 967
transcription factors. In part, such lack of specificity is due to the
large family of more than 3 adjacent zinc finger factors (TFClass:
2.3.3), whose motif was detected by the analysis but contains 487
members, accounting for almost a third of all transcription factors
(Fig. 3a). Systems biology networks and enrichment studies
provide insight into directionality of the response and draw
attention to different sized effector networks (Fig. 3b, c). Only few
nodes of the transcription factor target network were hypercon-
nected and showed promoter association with multiple transcrip-
tion factors in epigenomics and transcriptomics datasets (Figs. 4,
5). Such a high degree of network connectivity speaks to a

synergistic effect, where selected master regulators cooperate and
act in sync, resulting in robust transcriptional output.

Multi-omics integration of complementary data yields well-refined
target network
In order to improve the detected output, gene-specific systems
biology networks were employed. In particular, URA and TFT
analysis fueled by transcriptomic data provide useful insight.
Databases of gene sets rely in part on experimental data of gene-
specific knockdowns to characterize the impact of a transcription
factor on a target network. Furthermore, a consistent directional
response amplifies the significance of a detected hit. Therefore,
such directional, gene-specific networks have the ability to
overcome ambiguities. For example, members of the JUN-
related factors (TFClass: 1.1.1) are detected but show different
signs of regulation depending on the factor of interest, the
response of its target genes, and the change of expression of the
factor itself. After intersection of all four datasets, 11 transcription
factors belonging to 10 transcription factor families were
determined (Fig. 2c). This set of master regulators is supported
by complementary omics platforms and different analysis
techniques representing a high-confidence cooperation network
of the epigenomic master regulator KDM3A (Fig. 5). The
cooperation network includes cancer associated factors Jun
proto-oncogene, AP-1 transcription factor subunit (JUN, Gene ID:
3725, HGNC ID: 6204, TFClass: 1.1.1), CCAAT/enhancer binding
protein beta (CEBPB, Gene ID: 1051, HGNC ID: 1834, TFClass: 1.1.8),
myogenic differentiation 1 (MYOD1, Gene ID: 3091, HGNC ID:
7611, TFClass: 1.2.2), HIF1A, sterol regulatory element binding
transcription factor 1 (SREBF1, Gene ID: 379, HGNC ID: 11289,
TFClass: 1.2.6), MYC proto-oncogene, bHLH transcription factor
(MYC, Gene ID: 4609, HGNC ID: 7553, TFClass: 1.2.6), androgen
receptor (AR, Gene ID: 367, HGNC ID: 644, TFClass: 2.1.1), Sp1
transcription factor (SP1, Gene ID: 6667, HGNC ID: 11205, TFClass:
2.3.1), Meis homeobox 1 (MEIS1, Gene ID: 4211, HGNC ID: 7000,
TFClass: 3.1.4), zinc finger E-box binding homeobox 1 (ZEB1, Gene
ID: 6935, HGNC ID: 11642, TFClass: 3.1.8), and ELK1, ETS
transcription factor (ELK1, Gene ID: 2002, HGNC ID: 3321, TFClass:
3.5.2) representing less than 0.8% of all possible transcription
factors (Figs. 4d, 5). Thereby it represents a hyperconnnected

Table 1. Detection of transcriptional cooperation by multi-omics integration of complementary data and analysis techniques

Symbol Motif TFClass TF family ChIP-Seq
AME pval

ChIP-Seq
TFT pval

Transcriptomics URA
pval

Transcriptomics TFT
pval

JUN TGAGTCA 1.1.1 Jun-related factors 2.85E−16 1.55E−18 2.46E−03 2.40E−17

CEBPB ATTGC
GCAAT

1.1.8 C/EBP-related 4.04E−40 5.58E−09 0.00E+00 6.38E−09

MYOD CAGGTG 1.2.2 MyoD / ASC-related
factors

1.35E−38 6.97E−18 4.28E−02 6.36E−19

HIF1A CACGC 1.2.5 PAS domain factors 1.88E−179 3.10E−02 0.00E+00 4.54E−17

SREBF1 CACATG 1.2.6 bHLH-ZIP factors 1.14E−46 1.76E−08 3.81E−02 1.64E−12

MYC CACATG 1.2.6 bHLH-ZIP factors 9.41E−67 6.24E−21 1.97E−02 6.46E−31

AR AGAACANNNTCTTGT 2.1.1 Steroid hormone
receptors NR3 factors

1.02E−03 2.71E−02 3.30E−02 1.15E−02

SP1 CACCC 2.3.1 Three-zinc finger Krüppel-
related factors

4.04E−190 2.40E−63 5.19E−03 9.68E−87

MEIS1 TGACA 3.1.4 TALE-type homeo domain
factors

1.90E−04 6.26E−15 7.61E−03 7.37E−12

ZEB1 CACCTG 3.1.8 HD-ZF factors 1.02E−111 4.37E−18 2.88E−02 6.24E−19

ELK1 GGAAG 3.5.2 Ets-related factors 1.97E−03 1.43E−13 2.84E−02 1.78E−24

ChIP-Seq or transcriptomics data provide adjusted p values (pval) using analysis of motif enrichment (AME), transcription factor target analysis (TFT), or up-
stream regulator analysis (URA)
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network of networks surrounding an epigenomic cooperation
event. The identified factors can further be surveyed at the level of
basal expression or regulation in patient-derived tumor specimens
in TCGA underlining elevated expression in tumor progression.
The analysis validates previously reported associations and
contacts implicated in chromatin remodeling and discovered
newly identified cooperative interactions (Table 2). For the specific
role of KDM3A in cancer, epigenomic and transcriptional
cooperation with transcription factors is key. KDM3A cooperates
with mitogenic basic helix-loop-helix factors including MYC,
HIF1A, and SREBF1, and derives a lipogenic program from
association with nuclear receptors like AR. Ultimately, by over-
laying the motif-specific and genomic data produced through
matched experiments, epigenomic events can be correlated with
the transcriptomic effect of histone remodelers and transcription
factors.

DISCUSSION
ChIP-Seq based approaches provide sequence resolution but
detection of enriched transcription factor motifs is ambiguous and
is most appropriately accomplished at the transcription factor
family level to account for and include homologous factors. In
contrast, transcriptomics studies provide directionality of regula-
tion—transcriptional activation or repression upon epigenomic
activity—an important aspect lacking in coordinate-based ATAC-
Seq or ChIP-Seq experiments. Integration of different sequence,
gene, or network-based approaches prioritizes high-fidelity
cooperation partners in epigenomic regulation. Therefore, any
combination of complementary data from sequence, gene, or
network-based approaches is identified as desirable input for
reliable regulatory systems biology analyses.
For the oncogenic nature and target specificity of an

epigenomic master regulator, epigenomic and transcriptional
cooperation with transcription factors is key. KDM3A is able to
support initiation of transcription by its ability to specifically
remove mono-methylation and di-methylation marks from the
H3K9 residue leading to chromatin de-condensation.14 Transcrip-
tionally silenced genes contain methylation marks on the
H3K9 subunit18 and arrays of ChIP-Seq experiments monitoring
H3K9 methylation marks revealed global histone demethylation
effects of KDM3A. Combined assessment of histone demethyla-
tion events and gene expression changes indicated major
transcriptional activation, suggesting that distinct oncogenic
regulators, in particular transcription factors, may synergize with
the epigenetic patterns controlled by KDM3A. Furthermore, the
epigenetic factor was shown to cooperate with the androgen
receptor to control prostate tissue-specific gene target networks
introducing the concept of the epioncogene and transcriptional
cooperation.19

While KDM3A is able to control chromatin accessibility, the
mechanism by which it targets specific genes is of current interest
and may influence understanding of epigenetic dysregulation in
human disease. While several cancers exhibit deregulated KDM3A
activity, in prostate adenocarcinoma it functions as a transcriptional
coregulator with the androgen receptor.5,14,20,21 Such cooperative
coactivation of the androgen receptor with KDM3A features a role
for KDM3A as an active force in commencing oncogenesis in
prostate epithelial cells. KDM3A is known to control the transcription
and function of oncogenic transcription factors.22,23 However, an
expanded study outlining the effects of perturbed KDM3A H3K9
demethylation upon human transcription factor response element
recognition in cancer has so far been missing.
The cooperation network includes previously validated interac-

tions of MYC, HIF1A, and AR in cancer but also highlights close
association of KDM3A with transcriptional networks of factors

Fig. 3 Visualization of epigenomic and transcriptional cooperation
illustrates redundancy and complexity of a target network. a
Hierarchical trees of human transcription factors correspond to
transcription factor superclass, class, and family from inward out.
Transcription factor motifs often get recognized by multiple
members of the same transcription factor family due to structural
homology of DNA binding domains. The transcription factor target
analysis (TFT) is carried out on sequence-specific epigenomics data.
b Size of the transcriptional effector network and the direction of
response are key parameters when evaluating target genes in
epigenomic cooperation. The TFT analysis is based on differentially
expressed transcripts with transcriptomic up and down response in
red and blue, respectively. c Transcription factor target networks
provide insight into enrichment and direction of the response.
Identified cooperating transcription factors show agreement
between complementary data of expression levels, direction of
regulation, target sets, and hierarchical linkage
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rather studied in development and tissue differentiation like JUN,
CEBPB, MYOD, SREBF1, SP1, MEIS1, ZEB1, or ELK1 (Table 1). By
taking advantage of motif-specific target networks, KDM3A has
the ability to induce glycolytic genes in urothelial bladder
carcinoma.24,25 Epigenomic regulation of SREBF1 activity has been
reported to stimulate lipogenesis, and SREBP1 regulates lipid
accumulation and cell cycle progression in androgen independent
prostate cancer cell lines.26–28 KDM3A regulates the transcriptional
program of the AR, serves epigenomic master regulator by
epigenomic and transcriptional cooperation of prostate

adenocarcinoma.5 Despite some factors including the forkhead
box (FOX) factors (TFClass: 3.3.1) family were frequently detected
at the transcription factor family levels, lack of consistent overlap
of epigenomic and transcriptomic data eventually excluded
prominent cancer drivers like forkhead box A1 (FOXA1, Gene ID:
3169, HGNC ID: 5021, TFClass: 3.3.1), forkhead box M1 (FOXM1,
Gene ID: 2305, HGNC ID: 3818, TFClass: 3.3.1), forkhead box O1
(FOXO1, Gene ID: 2308, HGNC ID: 3819, TFClass: 3.3.1), or forkhead
box O3 (FOXO3, Gene ID: 2309, HGNC ID: 3821, TFClass: 3.3.1).
Despite FOX factors are known to cooperate with nuclear

Fig. 4 Network of transcriptional cooperation of an epigenomic master regulator visualized by transcription factor family trees. a A network of
transcription factors is detected using complementary epigenomic and transcriptomic data. The realm of potentially relevant transcription
factor families is large yet many data points are not mirrored or validated by different platforms. b, c Confidence and mutual data support
increases by integrating analysis of motif enrichment (AME), transcription factor target analysis (TFT), or up-stream regulator analysis (URA).
For each data source B chromatin modifications or c differential expression of target genes detected transcription factors supported by at
least two complementary techniques, AME and TFT for epigenomics data, and URA and TFT for transcriptomics. d High-confidence target
network of transcription factors validated by four different omics platforms integrating ChIP-Seq based motifs and transcriptional networks.
Legends of colored areas in Venn diagrams illustrate intersections of complementary datasets and analysis platforms with numbers of
identified transcription factor families, respectively. The numbers next to individual nodes of the hierarchical family tree indicate transcription
factor superclass, class, and family from inward out
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hormone receptors (TFClass: 2.1.1), it is possible that the putative
association with KDM3A steams from the fact that the closely
cooperating AR frequently has FOX motifs nearby. Systematic,
genome-wide surveys have elucidated that FOX motifs are
adjacent androgen response elements (AREs),29,30 thereby facil-
itating cooperation at the level of transcription factors and
promotion of prostate cancer progression.
Hundreds of transcription factors are significantly associated

with each individual data analysis platform or high-throughput
sequencing technology. Big data challenges can be overcome by
systems biology analysis and integration of multi-omics data.
Motif similarity is visualized by transcription factor family trees
classifying superclass, class, and family of transcription factors
(from inward to outward, Fig. 4) based on the characteristics of
their DNA-binding domains. Single epigenomic or transcriptomic
datasets examined by different analysis tools result in improved
resolution but leave ambiguities. The footprints of cooperating
transcription factors are found in cognate sequence motifs specific
to their DNA binding domains. Such sequence motifs are more
pronounced in events of cooperating epigenomic activity.
Detected motif enrichment highlights the modularity, versatility,
and efficacy of epigenomic cooperation, providing target speci-
ficity at genome-wide reach. The number of detected events in
genome-wide epigenomic binding studies provides statistical
power for sequence motif discovery and gene target enrichment.
As a consequence, high-resolution epigenomic studies often arrive
at multiple plausible solutions, though each suggested interaction
or association may carry statistical significance. By intersecting
complementary data platforms and analysis techniques, high-
fidelity gene target networks involved in epigenomic and
transcriptomic cooperation can be identified.

Within the regulome, epigenetic master regulators position
themselves at the top of cellular hierarchies and control distinct
phenotypic programs via reversible chemical modifications of
chromatin, histone or nucleotide marks, without altering the core
DNA sequence. Epigenetic oncogenes or tumor suppressors can
arise when epigenetic master regulators are somatically activated
or lost, and contribute to cancer initiation and progression.31 In
cancer, such epigenetic master regulators are found at the top of
regulatory hierarchies, particularly in pathways related to cellular
proliferation, survival, fate, and differentiation. For the manifesta-
tion of a genomic or non-genomic aberration of an epigenetic
master regulator, it is a necessity that its own activity is affected by
somatic mutation, copy number alteration, expression levels,
protein cofactors, or methylation status. Epigenetic master
regulators often accomplish target specificity of their phenotypic
program by cooperation with members of the transcriptional
machinery and therefore may depend on tissue-specific expres-
sion of such auxiliary factors. In cancer, an epigenetic master
regulator populates an extreme state and is either permanently
switched on or off. An epigenetic master regulator will become a
cancer driver, if it is not functionally neutral but rather contributes
to tumorigenesis or disease progression due to its hyperactive or
deactivated state. Genomic profiling of cancer patients has the
ability to identify coincidence or mutual exclusivity of somatic
alterations of epigenomic and transcription factors. Extreme states
of epigenetic master regulators by somatic loss or gain of function
in cancer may emphasize preexisting cooperative interactions
with transcription factors, which may be subtle and difficult to
detect under normal circumstances. A defined challenge in the
field of epigenetic master regulators is to identify cancer-specific
vulnerabilities in gene targets and biological pathways that are

Fig. 5 The network of networks convoluted in epigenomic and transcriptional cooperation by an epigenomic master regulator displays
specificity yet redundancy and hyperconnectivity. a A highly specific effector network is accomplished by epigenomic and transcriptional
cooperation. Key features of the network are hyperconnectivity of utilized nodes and targeting of effector genes by multiple cooperating
transcription factors. b Each identified node of the transcription factor network comprising epigenomic cooperation is supported by
complementary epigenomic and transcriptomic data. Each cooperating transcription factor supports the epigenomic factor—in this case
KDM3A—by contributing motif-specific recognition, by directing chromatin accessibility, and by controlling transcriptional coactivation
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frequently and consistently perturbed under the control of an
epigenetic driver.

CONCLUSION
In conclusion, the identification of transcriptional cooperation and
regulatory hierarchies highlights the importance of epigenetic
regulators in mitogenic control and their potential as therapeutic
targets. Epigenetic regulators such as KDM1A, KDM3A, KDM5A,
KDM6A, KDM7A, EZH2, DOT1L, and others have been shown to be
critical in oncogenesis and cancer resistance.3,32,33 The discovery
of the specific role of KDM3A in the interplay between a tissue-
specific steroid receptor transcription factor and metabolic
signaling provides a foundation for rational design of combination
approaches where metabolic, epigenetic, and hormone-
deprivation therapies may synergize. Our integrated multi-
platform analysis reveals a complex molecular landscape of
epigenomic and transcriptomic cooperation in cancer, providing
avenues for precision medicine.34 A close teamwork of the
transcriptional and epigenomic machinery was discovered, in
which one component opens the chromatin, another recognizes
gene-specific DNA motifs, and others scaffold between histones,
cofactors, and the transcriptional complex. This highlights a close
connection between the epigenomic and transcriptomic machin-
ery, albeit much of the underlying principles remain to be

discovered. In conclusion, transcriptomics in combination with
epigenomic profiling and measurement of chromatin accessibility
enable global detection of epigenetic modifications and char-
acterization of transcriptional and epigenetic footprints. Chroma-
tin remodelers and transcription factors are in close
communication via recognition of post-translational histone
modifications and coordinate the dynamic exchange of chromatin
between open, transcriptionally active conformations and com-
pacted, silenced ones. In cancer, due to the ability to team up with
transcription factors, epigenetic factors concert mitogenic and
metabolic gene networks, claiming the role of a cancer master
regulators or epioncogenes. Exploration into the cooperative roles
of epigenetic histone modifiers and transcription factor families in
gene regulatory networks contributes to our understanding of
how a seemingly promiscuous epigenomic program is converted
into a specific transcriptional response assisting in oncogenesis.

METHODS
Experimental design
Optimal experimental design mirrors different layers of the regulatory
network and organizes sequencing assays in an array of coordinated
experiments.4,5,35 Coordinated epigenomic and transcriptomic profiles are
well-equipped to capture different regulatory levels governing the circuitry
of a cooperative network. The workflow introduced in our approach is

Table 2. Epigenomic and transcriptional cooperation events in cancer. Original findings and reported cooperation events of epigenomic regulators
with transcription factor are enumerated

Symbol TFClass Cooperation event Ref.

JUN 1.1.1 KDM3A assists in recruiting JUN to AP1 binding sites in regulating expression of CD44, MMP7, and PDGFRB in liver
adenocarcinoma tumor formation

51

KDM4A promotes a positive feedback loop by facilitating the binding of the AP1 complex to the promoters JUN and FOSL1 in
squamous cell carcinoma cells

52

CEBPB 1.1.8 Novel event

KDM4B serves as a cofactor for CEBPB in preadipocytes and is recruited to the promoters of CEBPB regulated cell cycle genes 53

MYOD 1.2.2 Novel event

KDM4B regulates the expression of MYOD and physically interacts with MYOD thereby controlling myogenic differentiation 54

KDM4C decreases MYOD degradation and increase MYOD transcriptional activity to facilitate skeletal muscle differentiation 55

HIF1A 1.2.5 KDM3A expression is stimulated by HIF1A binding to a response element in the promoter region of KDM3A 24

KDM3A is regulated by HIF1A stimulating tumor formation in renal cell carcinoma 22

KDM3A cooperates with HIF1A to induce glycolytic genes in urothelial bladder carcinoma 25

SREBF1 1.2.6 Novel event

KDM1A regulates SREBF1 binding to the FASN promotor stimulating lipogenesis 26

MYC 1.2.6 KDM3A stimulates MYC expression and attenuates its ubiquitin-dependent degradation by binding to a E3 ubiquitin ligase 56

KDM3A regulates transcription of MYC and PAX3 by directly binding to their promotors and regulates their H3K9me2 level in
breast adenocarcinoma

57

KDM4B binds the MYC/MAX motif and regulates expression of MYC signaling in neuroblastoma 58

N-MYC physically interacts and recruits KDM4B. Additionally KDM4B is able to regulate the expression of MYC signaling in
neuroblastoma

58

AR 2.1.1 KDM3A regulates the transcriptional program of the AR, serves epigenomic master regulator by epigenomic and
transcriptional cooperation of prostate adenocarcinoma

5

KDM3A facilitates transcriptional activation by hormone-dependent recruitment of the AR to target genes in prostate
adenocarcinoma

14

KDM1A and KDM4D bind to the AR and localize to ARE half sites in the promoter region of VEGFA in placental development 21

KDM4A binds the AR and supporting urothelial bladder carcinoma initiation and progression 59

KDM4B enhances AR transcriptional activity by demethylation and inhibits ubiquitination of the AR 60

SP1 2.3.1 Novel event

KDM4A silences SP1 by chromatin demethylation in breast adenocarcinoma 61

MEIS1 3.1.4 Novel event

ZEB1 3.1.8 Novel event

ELK1 3.5.2 Novel event
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open and applicable to different epigenome and transcriptome profiles
including ChIP-Seq, ATAC-Seq, RNA-Seq, and microarray experiments.
Since the analysis primarily relies on differential expression, microarray or
RNA-Seq data are equally applicable. Additionally, data on alternative
transcripts may allow resolving regulation of splice-isoforms. For coordi-
nated multi-omics analysis, it is important to integrate compatible datasets
and look for matching conditions, each associated with presence or
absence of a defined epigenomic event or factor. Genomic editing offers
tools to conduct target-specific loss or gain of function studies such that an
array of coordinated experiments can be assembled. Complementary
epigenomic and transcriptomic data—on the one hand in form of
significantly enriched genomic regions (epigenomic target regions), on the
other hand as differentially expressed transcripts (target genes)—serves as
input for four different analysis platforms (Figs. 1, 2).

Investigation of KDM3A as epigenetic switch in human cancer
KDM3A coordinates transcriptional activation by H3K9 demethylation
thereby enabling chromatin accessibility and replacement of components
of nucleosome-stalled polymerase complexes by tissue-specific transcrip-
tion factors. The workflow is exemplified by reprocessing published data
on KDM3A activity recorded with matching knockdown conditions in a
human prostate carcinoma epithelial cellular model deposited in NCBI GEO
entries GSE109748 and GSE7049829,36,37 (CRL-2505, American Type Culture
Collection, Manassas, VA). The utilized cellular model is a variant derived
from a xenograft and simulates castration-induced regression and relapse
typical of human prostate carcinoma epithelial cells independent of
dihydroxytestosterone stimulation. Furthermore, KDM3A is activated by
somatic copy number amplification in lung, prostate, uterine, bladder,
testicular germ cell, ovarian, cervical, breast, sarcoma, melanoma, and
other cancers making its cooperation network an important target of
broad interest in oncology.

Data processing
Illumina HiSeq 2000 (Illumina, San Diego, CA) fastq files were aligned to the
reference human genome 19 using the Bowtie software package.38 Peak-
calling utilized a model-based analysis of ChIP-Seq (MACS) algorithm.39,40

Significant ChIP-Seq genomic locations relative to nearby gene bodies
were annotated by ChIPSeek.41 ChIP-Seq peak regions were sorted and
filtered by BEDtools.42 Average ChIP enrichment profiles over specific
genomic features were calculated using the cis-regulatory element
annotation system tool.43,44 ChIPSeq binding profiles were visualized in
the integrative genomics viewer (IGV).45 Utilized conditions include ChIP-
Seq profiles of antibodies specific for chromatin marks H3K9me1,
H3K9me2, and the epigenomic modifier KDM3A in combination with small
hairpin RNA (shRNA) knockdown of KDM3A matched with coordinated
transcriptomic data of control and KDM3A knockdown cells using human
transcriptome platform GPL10558 (HT-12 V4.0, Illumina, San Diego, CA).5

The epigenomic and transcriptomics datasets contained 77911 features
and 4356 differentially expressed transcripts upon KDM3A knockdown,
respectively, with p values and q values below 0.05 adjusted for multiple
hypothesis testing.

Network analysis and transcription factor target enrichment
Human transcription factors were annotated according to their Human
Genome Organization (HUGO) Gene Nomenclature Committee (HGNC)
identification number using the using the multi-symbol checker tool.
Discovered transcription factors were classified by shared DNA binding
domains according to the hierarchical classification of human transcription
factors (TFClass) database.46 Transcription factor binding and promoter
sites were annotated utilizing transcription factor databases.30,47 For
transcription factor binding site searches we built manual or utilized
deposited position site-specific matrices or sequence logos of curated,
non-redundant transcription factor databases. Statistically significant
enrichment of these transcription factor motifs was determined using
find individual motif occurrences (FIMO) and motif enrichment tools of the
motif-based sequence analysis toolkit (MEME) suite.48 Upstream regulators
were determined by ingenuity pathway analysis (IPA, Qiagen, Redwood
City, CA) based on differentially expressed genes with an adjusted p value
below 0.05. Significant enrichment of target gene networks with consistent
transcription factor motifs was calculated for all target genes with
annotated transcription factor motifs in the 3′ promoter region of their
transcription start sites.49

Data availability
Data is deposited in NCBI GEO entries GSE109748 and GSE70498. Identified
transcription factors and statistics are assembled in the Supplementary
Information. All data supporting the findings of this study is openly
available within the paper and the Supplementary Information deposited
at the npj Systems Biology and Applications website. A preprint version of
this manuscript is made available to the scientific community on the
preprint server bioRxiv 309484.50

Supplementary Table 1–6 are compiled as Supplementary Information.
Supplementary Table 1: Master regulators among epigenomic and
transcriptomic cooperation network. Supplementary Table 2: Detection
and hierarchical classification of human transcription factors. Supplemen-
tary Table 3: ChIP-Seq analysis of motif enrichment (AME). Supplementary
Table 4: ChIP-Seq transcription factor target (TFT) analysis. Supplementary
Table 5: Transcriptomics upstream regulator analysis (URA). Supplementary
Table 6: Transcriptomics transcription factor target (TFT) analysis.
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